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LETTER TO THE EDITOR

A solvable multipolar glass
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50-950 Wroclaw 2, Poland

Received 9 November 1995

Abstract. We examine a class of models of fully isotropic uniaxjapolar glasses with

M orientational degrees of freedom and Gaussian-distributed random, infinite-range exchange
interactions. The multipolar glass transition was accessed in the Mrgigtit. A complete
solution is obtained foM — oo and arbitrary parameter in the glassy phase within the Parisi
ansatzwith a single step of the replica symmetry breaking.

Orientational glasses have recently attracted much experimental and theoretical attention
(see reviews [1, 2]). These include disordered systems with Ising, vector, Potts, quadrupolar,
octupolar or higher-order multipolar interactions. Usually, an orientational glass is formed
when a solid phase with dynamic orientational disorder can be cooled down to low
temperatures without undergoing a transition to a long-range orientationally ordered phase.
Examples of orientational glasses include(BK CN) [3], Ari_,(N2), [4] and para- and
ortho-hydrogen(pH,):—, (0H,), mixtures[5] (quadrupolar glasses, QG). An example of an
octupolar glass is the mixed crystal K€H,)1_, [6]. In contrast to the ‘conventional’
spin glasses different aspects of orientational disordered systems are not yet satisfactorily
explained [7]. For example, there is some controversy about the application of the Parisi
replica symmetry breaking (RSB) scheme to the quadrupolar glass problem [8]. Therefore,
while attempting to address the question of glassy formation in multipolar glass systems, it
appears to have a simple reference model solved exactly at least in some limiting cases.
The unified Hamiltonian, describing multipolar glasses reads [9]:

1
= i

§ JijA/Ll...ul,;vl...v,, X;tl---ll-n X;l---“z; ) (1)

<j

The tensorA#r#r:v1-Y (u, v = 1... M) describes the symmetry of the interaction whereas
the particle tensorif v describeM-orientational degrees of freedom (the normalizing
prefactor in equation (1),/M7~1, has been introduced for convenience). The Hamiltonian
(1) generalizes the correlations found in dipolar = 1) glasses to those present in
multipolar glassy systems of order For p = 2 we have an example of the quadrupolar
glass while forp > 2 the Hamiltonian (4) describes other glassy systems including uniaxial
hexapolar(p = 3), octupolar(p = 4) or higher-order multipolar systems. To be explicit,
we take the matrix/;; which is a random symmetric matrix with independently Gaussian
distributed components scaled with

P(J;j) = (N/2n J%)" 2 exp(—N J5/2J%). )
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If the system is uniaxial with no axes preferred, i.e.
APV Z (SP(VI) - P(U,y) (3)

where the summation runs over aII permutat®mf the indicesv; ... v, the tensorX"1 o

can be replaced by a ‘spin’ or component prodmﬁt"""’ =ni".. “” and the phase space
is more easily accessible in termsf (in the general case, the phase space is described
by the set of the rotation§ O (M) of the tensorX!**’). Therefore, the Hamiltonian (1)

reads
H= - lZ‘J,](n, n;)" (4)

i<j
wheren,; - n; =, ni'n}.

A W|dely used method to study statistical mechanical models is to increase the number of
components/, where it is often found that the new model is exactly solvable in the infinite
component limitM — oo and that a systematic/M expansion may be developed. We
follow this strategy here and in this letter we study the glassy properties of the multipolar
disordered system (4) in th& — oo limit by superimposing the spherical constraint
n; -n; = M. We recall that the model (4) fop = 1 and M — oo reduces to the
spherical spin glass model considered some time ago [10,11]. The fiikitemponent
system corresponding to the quadrupolar cgse= 2) has been studied by Goldbart and
Sherrington [8]. The non-random version of the Hamiltonian (4)fee 2 was considered
for arbitrary M by Ohnoet al [12] and in the context oR PX~ field theory [13].

In the present letter we show that the system (4) exhibits a glassy transition with
a discontinuous RSB. Moreover, we identify the scenario for this spontaneous RSB and
prove that the one-step of the replica symmetry breaking (1RSB) within Raussitz[14]
is the exact solution for the multipolar model fpr > 2 in the largeM limit (4)—the
order parameter functiog(x) is a step function with a break poinyy = m(T) where
T denotes temperature. As a consequence, fluctuations about the disordered state should
remain finite at the critical temperatuiig, hence nonlinear susceptibilities wilbt diverge
as T approached; from the disordered phase. Interestingly, this feature is in striking
resemblance to the exactly solvable random energy level model [15] or the ‘simplest spin
glass’, namely the Ising spin glass wigispin interactions forp — oo [16]. However,
there are important differences in symmetries and the nature of interactions between the
Hamiltonian (4) and the-spin model: O}/) rotational symmetry and two-body (= 2)
interactions in equation (4) as opposed to discegtesymmetry and multi-spin interactions
in the p-spin Ising glass. For related quadrupolar systems we emphasize the first-order glass
transition found in QG foM > M. ~ 3.4 (see [8]). In the present paper we show that the
first-order phase transition persists for arbitrary multipolar glass—an exact statement in the
large-M component limit.

Introducingn replicas of the original system, we average the free enérgy —T In Z
whereZ = Tre## (8 = 1/kgT) over the ensemble of the random interacti¢ss} using
the identity [INZ]ay = lim,—.o([Z"]av — 1)/n, thus reducing the problem to a translationally
invariant system. In the process distinct sites are decoupled and tbtemponents can be
traced out. Finally, the number of sitdsis taken to infinity, along with thé4 — oo limit,
allowing the exact evaluation of the disorder averaged free energy dgasiy[F/M N]av
via the saddle point method. Explicitlya, = far™ ¥+ £3%9 where

i 1
Bfay %= lim = { (BJ) (2p—1>Zq + 5 T In[L, — p(B7) Ru]}
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de0= 2 (B17@p ~ DR 4 In [Zj - p(ﬂJ)ZRZP‘l] — B )

contains the natural glass order parameter according to the symmetry of the problem
Gop = {(N¢ -nf)ﬂ, (o # B) and measuring the overlap of the configurations of couplings
of two replicas whileR = ((n{ - n{)r); describes the replica-diagonal correlation in
the multipolar system. Herg,..)7 and (...), are the statistical and random averages,
respectively. Furthermord,, and [u].s = qjg’l aren x n matrices with trace Tracting in
the replica space. The Lagrange multipliesuperimposes the constraint fixing the length
of ‘spins’ n¢.

Accessing the glassy phase requires pra@pesatzfor the matrixq in order to perform
then — O limit in equation (5). It is customary to start with the replica symmetric (RS)
propositiong*® = ¢ for all « # B. By examining the stationarity conditioda,/dg = 0
for p > 1 we found that the only stable RS solution correspondg £60. There are other
non-zero (but unstable) RS solution involving a jump in the order parametgrich have
to be rejected. Since the solution corresponding to the high-temperature(ghas®) does
not become unstable at low temperatures, the relevant solution cannot be close to it and
so there must be a jump in the order parameter at the transition point accompanied by the
spontaneous RSB. In order to access the RSB solution we follow Parisi first-step replica
symmetry breaking (1IRSBynsatzand expresg| in terms of a tensor product

d = (q1— q0)Lu/m ® enel + qoene] —qil, (6)

wheree! = (1,1, ...,1) is a transposed column vector withelements identical to unity.
Here,m is the partitioning parameter which becomes a continuous variaklien0< 1 in
then — 0 limit and equation (5) reads

ﬁf;\/on-diagz 211(:3‘])2(217 — D[(m — l)qu - mqu]
1 p(BI)?Rgy
2p-1

214 p(BN2RG L —m) + pm(BI)2Rg]
m-—1

1 -
5~ In[L+ p(B)*Rg;" ]

*%% IN[L + p(B)?RgZ" " (L — m) + pm(BJ)?RgZ" 1. 7

The 1RSB involves five parametess, g1, m, z and R which have to be determined
self-consistently. Stationarity with respectipnis not necessarily required in the case of
continuous order parameter functigrix) but is requested in the case where there is a
discontinuous transition as is happening here. Accordingly,

8fav _ 8f‘aV _ afav _ afav _ 8f‘aV
dqo 9dq1 om R 9z
For an arbitrary value of the parameierthe RS solutionjg = ¢; = ¢ is contained in the
1RSB equations (7) and (8). However, as already pointed out, this is not the correct one
and equations (7) and (8) will admit another solution wjth= 0 andg; # 0 involving a
discontinuous jump of; at certain critical temperaturg. We found that the free energy
of 1RSB solution coincides with the paraorientational RS solugien0 only atm = 1. As
a result, the critical line is given as the solution of equation (7) wite= 1. The critical
temperature of this discontinuous transition is given by

keT./J = /py/1— yyP~2. 9)

— 0. @8)
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At T, the order parameter jump is

(BJ) vy

=71 (10)
pr -y
Here, y is the solution ofF(m = 1, p, y) = 0 where
1 2y2 4 (2m — 4 1- 1
F(m’pyy):_2|n<\/my +@m—-4hy+1-—my+ )
2m Vm2y2 4+ 2m — Ay + 1+ my +1
N (2p — 1)y?
2py/m2y2 + (2m — Ay + 1+ 2m — Hpy +2p
’ (11)

_m\/m2y2+ @2n—DHy+1-—m?y+m

is the universal function dependent only on the break-peiand the parametgr. We have
computed numericallyf;, for several values of the parameter The results are presented

in table 1. It is seen that the critical temperature decreases rather rapidly with increase of
the parametep.

Table 1. Multipolar glass transition temperatuf@ as a function of the parametgr The case
p = 1 corresponnds to the critical temperature of the spherical dipolar model (RS solution, see

[10, 11)).

p ym=1L1p) ksTe(p)/J
j— 1

2 0.804522 0.503039

3 0.00233458 @2908x 10°°
4 0.00153777 26730x 1079
5 0.00154355 P6834x 1071
6 0.00154581 46033x 10714

An important question is whether the 1RSB solution presented above is exact or whether
it is just a good approximation. Instead of performing the stability analysis in a form of
fluctuation expansion about the 1RSB solution we have rather decided to look at the problem
with arbitrary k step of the RSB. For the genet®SB the matrix

q= (qk - qk—l)ln/mk ® €my elqk + (qk—l - qk—Z)ln/mk,1 &® e}'nk,lel,—lkfl

+-+ qOeneI - qkln

(12)
is given in terms of the parameters
mo=nzmy=2mp=---2m=1
Go<q<q2- < g1 < gk (13)

which determine the order parameter function at each level of the Parisi ultramesatz
[14]. The matrixq can be parametrized by the functiexy) which measures the fraction
of pairs of replicas with overlag.s < g, where

k
xX(@)=n+Y (m41—m)0(q —q,) (14)
r=0
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with m,,1 = 1 andf(q) as the step function. Assuming that the RSB goes to the arbitrary
k level, the function 0< x(¢) < 1 becomes continuous in tle— 0 limit and equation (5)
transforms into integral expression of the form

1 pBI*Rg*H0)
21+ p(BJ)?RLf, dy g ~1(y)]

pnon-diag _ %‘ In[1 + p(BJ)?Rg*1(1)] —

1 _ 2

B / a4 2P 411)(/“) 2P0
0

1 /1 4 PCP=DBI’RG2()q'x)
2Jo 14 p(BIPRIxg? 1) + [, dy g 1(y)]

Now, we prove that for a generaRSB the only saddle point corresponding to the 1RSB
survives. By requiring stationarity of equation (15) with respect to the variations

8x(g) =Y _(Smpp1 —6m)0(g — q,) — »_(myy1 —m,)8(q — ¢,)8q,  (16)

r r

(15)

one gets
a?’ %¢(q,) =0 0<r<k
qr
/ dg ¢(q)g* 2 =0 1<r<k 17
qr-1
where
, PRp—D(BI)*R(q)*~2 P(B)*R?%q*~1(0)

q
= (BJ)? _/ -
@ =N | M (BI2RA G a)P [+ p(BI)?RA,(q(0), g2

g
Adhq) =@V = @p—1) / dg x(q)g? > (18)
i

so that¢(g,) = 0, 0 < r < k and sinceg?”~? is increasings(¢g) must change sign for
g--1 < g < ¢, possessing at least two extrema within each intergali[ g.] obeying
¢'(&) =0 for & = ¢ Thus, for thekRSB we expect not less thert Btationary points as
solutions of the equation

d

M =02k ® = (® (19)
within the domain 0< ¢(0) < £ < ¢(1), where

_ o 2p=1.1y _ -1 -1 _ 1
K (€) =q7 D) —(B)) [pé” (2p—1)[3JR:|

q(D)
cr(E) = £ dg x(q)g? 2. (20)

Let us observe now that equation (20) and the property

d2
S?ig) = —(2p = £ *x(§) — £ 7°P(§) < O (21)

where P(¢) > 0 is the probability distribution of thermodynamic state&) = dx(&)/dé,
implies thatkg(¢) is monotonically decreasing concave function, whergd§) for p > 1

is convex. Consequently, there are no more ttvem solutions of the stationary equation
(19) implying that the only solution for multipolar system involves one step of the replica
symmetry breaking.
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The important question which arises is: what happens beyond mean field in finite range
systems? Physically, the weight of the 1RSB solution is the probability for occurrence
of non-zero overlap. There is no reason why it should be constant and one would thus
expect that it fluctuates. Therefore, it would be useful to study the loop expansion about
the 1RSB solution. Finally, even in th = oo infinite-range limit 1RSB is expected to
produce ergodicity breaking and ageing effects with non-trivial non-equilibrium relaxations
[17]. Further dynamical study of the problem seems of great interest.

This work was supported by the Polish Science Committee (KBN) under the grant
2P03B12909.
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