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LETTER TO THE EDITOR
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50-950 Wroclaw 2, Poland
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Abstract. We examine a class of models of fully isotropic uniaxialp-polar glasses with
M orientational degrees of freedom and Gaussian-distributed random, infinite-range exchange
interactions. The multipolar glass transition was accessed in the large-M limit. A complete
solution is obtained forM → ∞ and arbitrary parameterp in the glassy phase within the Parisi
ansatzwith a single step of the replica symmetry breaking.

Orientational glasses have recently attracted much experimental and theoretical attention
(see reviews [1, 2]). These include disordered systems with Ising, vector, Potts, quadrupolar,
octupolar or higher-order multipolar interactions. Usually, an orientational glass is formed
when a solid phase with dynamic orientational disorder can be cooled down to low
temperatures without undergoing a transition to a long-range orientationally ordered phase.
Examples of orientational glasses include: K(Br, CN) [3], Ar1−x(N2)x [4] and para- and
ortho-hydrogen(pH2)1−x(oH2)x mixtures[5] (quadrupolar glasses, QG). An example of an
octupolar glass is the mixed crystal Krx(CH4)1−x [6]. In contrast to the ‘conventional’
spin glasses different aspects of orientational disordered systems are not yet satisfactorily
explained [7]. For example, there is some controversy about the application of the Parisi
replica symmetry breaking (RSB) scheme to the quadrupolar glass problem [8]. Therefore,
while attempting to address the question of glassy formation in multipolar glass systems, it
appears to have a simple reference model solved exactly at least in some limiting cases.

The unified Hamiltonian, describing multipolar glasses reads [9]:

H = 1

Mp−1

∑
i<j

JijA
µ1...µp;ν1...νpX

µ1...µp

i X
ν1...νp

j . (1)

The tensorAµ1...µp;ν1...νp (µ, ν = 1 . . . M) describes the symmetry of the interaction whereas
the particle tensorsX

µ1...µp

i describeM-orientational degrees of freedom (the normalizing
prefactor in equation (1), 1/Mp−1, has been introduced for convenience). The Hamiltonian
(1) generalizes the correlations found in dipolar(p = 1) glasses to those present in
multipolar glassy systems of orderp. For p = 2 we have an example of the quadrupolar
glass while forp > 2 the Hamiltonian (4) describes other glassy systems including uniaxial
hexapolar(p = 3), octupolar(p = 4) or higher-order multipolar systems. To be explicit,
we take the matrixJij which is a random symmetric matrix with independently Gaussian
distributed components scaled withN

P(Jij ) = (N/2πJ 2)1/2 exp(−NJ 2
ij /2J 2). (2)
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If the system is uniaxial with no axes preferred, i.e.

Aµ1...µp;ν1...νp = 1

p!

∑
Pν

δP (ν1)
µ1

. . . δ
P (νp)
µp

(3)

where the summation runs over all permutationP of the indicesν1 . . . νp the tensorX
µ1...µp

i

can be replaced by a ‘spin’ or component productX
µ1...µp

i = n
µ1
i . . . n

µp

p and the phase space
is more easily accessible in terms ofn

µ

i (in the general case, the phase space is described
by the set of the rotationsSO(M) of the tensorX

µ1...µp

i ). Therefore, the Hamiltonian (1)
reads

H = 1

Mp−1

∑
i<j

Jij (ni · nj )
p (4)

whereni · nj = ∑
µ n

µ

i n
µ

j .
A widely used method to study statistical mechanical models is to increase the number of

componentsM, where it is often found that the new model is exactly solvable in the infinite
component limitM → ∞ and that a systematic 1/M expansion may be developed. We
follow this strategy here and in this letter we study the glassy properties of the multipolar
disordered system (4) in theM → ∞ limit by superimposing the spherical constraint
ni · ni = M. We recall that the model (4) forp = 1 and M → ∞ reduces to the
spherical spin glass model considered some time ago [10, 11]. The finiteM-component
system corresponding to the quadrupolar case(p = 2) has been studied by Goldbart and
Sherrington [8]. The non-random version of the Hamiltonian (4) forp = 2 was considered
for arbitraryM by Ohnoet al [12] and in the context ofRP M−1 field theory [13].

In the present letter we show that the system (4) exhibits a glassy transition with
a discontinuous RSB. Moreover, we identify the scenario for this spontaneous RSB and
prove that the one-step of the replica symmetry breaking (1RSB) within Parisiansatz[14]
is the exact solution for the multipolar model forp > 2 in the large-M limit (4)—the
order parameter functionq(x) is a step function with a break pointx0 ≡ m(T ) where
T denotes temperature. As a consequence, fluctuations about the disordered state should
remain finite at the critical temperatureTc, hence nonlinear susceptibilities willnot diverge
as T approachesTc from the disordered phase. Interestingly, this feature is in striking
resemblance to the exactly solvable random energy level model [15] or the ‘simplest spin
glass’, namely the Ising spin glass withp-spin interactions forp → ∞ [16]. However,
there are important differences in symmetries and the nature of interactions between the
Hamiltonian (4) and thep-spin model: O(M) rotational symmetry and two-body (p = 2)
interactions in equation (4) as opposed to discreteZ2 symmetry and multi-spin interactions
in thep-spin Ising glass. For related quadrupolar systems we emphasize the first-order glass
transition found in QG forM > Mc ≈ 3.4 (see [8]). In the present paper we show that the
first-order phase transition persists for arbitrary multipolar glass—an exact statement in the
large-M component limit.

Introducingn replicas of the original system, we average the free energyF = −T ln Z

whereZ = Tr e−βH , (β = 1/kBT ) over the ensemble of the random interactions{Jij } using
the identity [lnZ]av = limn→0([Zn]av − 1)/n, thus reducing the problem to a translationally
invariant system. In the process distinct sites are decoupled and then

µ

i components can be
traced out. Finally, the number of sitesN is taken to infinity, along with theM → ∞ limit,
allowing the exact evaluation of the disorder averaged free energy densityfav = [F/MN ]av

via the saddle point method. Explicitly,fav = f
non-diag
av + f

diag
av where

βf non-diag
av = lim

n→0

1

n

{
1

4
(βJ )2(2p − 1)

∑
αβ

q
2p

αβ + 1

2
Trn ln[1n − p(βJ )2Rµ]

}
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f diag
av = 1

4
(βJ )2(2p − 1)R2p + 1

2
ln

[
2z

J
− p(βJ )2R2p−1

]
− βz (5)

contains the natural glass order parameter according to the symmetry of the problem
qαβ = 〈〈nα

i · n
β

i 〉T 〉J (α 6= β) and measuring the overlap of the configurations of couplings
of two replicas whileR = 〈〈nα

i · nα
i 〉T 〉J describes the replica-diagonal correlation in

the multipolar system. Here,〈. . .〉T and 〈. . .〉J are the statistical and random averages,
respectively. Furthermore,1n and [µ]αβ = q

2p−1
αβ aren×n matrices with trace Trn acting in

the replica space. The Lagrange multiplierz superimposes the constraint fixing the length
of ‘spins’ nα

i .
Accessing the glassy phase requires properansatzfor the matrixq in order to perform

the n → 0 limit in equation (5). It is customary to start with the replica symmetric (RS)
propositionqαβ = q for all α 6= β. By examining the stationarity condition∂fav/∂q = 0
for p > 1 we found that the only stable RS solution corresponds toq = 0. There are other
non-zero (but unstable) RS solution involving a jump in the order parameterq which have
to be rejected. Since the solution corresponding to the high-temperature phase(q = 0) does
not become unstable at low temperatures, the relevant solution cannot be close to it and
so there must be a jump in the order parameter at the transition point accompanied by the
spontaneous RSB. In order to access the RSB solution we follow Parisi first-step replica
symmetry breaking (1RSB)ansatzand expressq in terms of a tensor product

q = (q1 − q0)1n/m ⊗ emeT
m + q0ene

T
n − q11n (6)

whereeT
n = (1, 1, . . . , 1) is a transposed column vector withn-elements identical to unity.

Here,m is the partitioning parameter which becomes a continuous variable 06 m 6 1 in
the n → 0 limit and equation (5) reads

βf non-diag
av = 1

4(βJ )2(2p − 1)[(m − 1)q
2p

1 − mq
2p

0 ]

−1

2

p(βJ )2Rq
2p−1
0

1 + p(βJ )2Rq
2p−1
1 (1 − m) + pm(βJ )2Rq

2p−1
0

+1

2

m − 1

m
ln[1 + p(βJ )2Rq

2p−1
1 ]

+1

2

1

m
ln[1 + p(βJ )2Rq

2p−1
1 (1 − m) + pm(βJ )2Rq

2p−1
0 ]. (7)

The 1RSB involves five parametersq0, q1, m, z and R which have to be determined
self-consistently. Stationarity with respect tom is not necessarily required in the case of
continuous order parameter functionq(x) but is requested in the case where there is a
discontinuous transition as is happening here. Accordingly,

∂fav

∂q0
= ∂fav

∂q1
= ∂fav

∂m
= ∂fav

∂R
= ∂fav

∂z
= 0. (8)

For an arbitrary value of the parameterm the RS solutionq0 = q1 = q is contained in the
1RSB equations (7) and (8). However, as already pointed out, this is not the correct one
and equations (7) and (8) will admit another solution withq0 = 0 andq1 6= 0 involving a
discontinuous jump ofq1 at certain critical temperatureTc. We found that the free energy
of 1RSB solution coincides with the paraorientational RS solutionq = 0 only atm = 1. As
a result, the critical line is given as the solution of equation (7) withm = 1. The critical
temperature of this discontinuous transition is given by

kBTc/J = √
p
√

1 − yyp−1. (9)
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At Tc the order parameter jump is

q1 = (βJ )
− 1

p y
1
p

p
1

2p (1 − y)
1

2p

. (10)

Here,y is the solution ofF(m = 1, p, y) = 0 where

F(m, p, y) = − 1

2m2
ln

(√
m2y2 + (2m − 4)y + 1 − my + 1√
m2y2 + (2m − 4)y + 1 + my + 1

)
+ (2p − 1)y2

2p
√

m2y2 + (2m − 4)y + 1 + (2m − 4)py + 2p

− y

m
√

m2y2 + (2m − 4)y + 1 − m2y + m
(11)

is the universal function dependent only on the break-pointm and the parameterp. We have
computed numericallyTc for several values of the parameterp. The results are presented
in table 1. It is seen that the critical temperature decreases rather rapidly with increase of
the parameterp.

Table 1. Multipolar glass transition temperatureTc as a function of the parameterp. The case
p = 1 corresponnds to the critical temperature of the spherical dipolar model (RS solution, see
[10, 11]).

p y(m = 1, p) kBTc(p)/J

1 — 1
2 0.804 522 0.503 039
3 0.002 334 58 9.429 08× 10−6

4 0.001 537 77 7.267 30× 10−9

5 0.001 543 55 1.268 34× 10−11

6 0.001 545 81 2.160 33× 10−14

An important question is whether the 1RSB solution presented above is exact or whether
it is just a good approximation. Instead of performing the stability analysis in a form of
fluctuation expansion about the 1RSB solution we have rather decided to look at the problem
with arbitraryk step of the RSB. For the generickRSB the matrix

q = (qk − qk−1)1n/mk
⊗ emk

eT
mk

+ (qk−1 − qk−2)1n/mk−1 ⊗ emk−1e
T
mk−1

+ · · · + q0ene
T
n − qk1n

(12)

is given in terms of the parameters

m0 = n > m1 > m2 > · · · > mk > 1

q0 6 q1 6 q2 · · · 6 qk−1 6 qk (13)

which determine the order parameter function at each level of the Parisi ultrametricansatz
[14]. The matrixq can be parametrized by the functionx(q) which measures the fraction
of pairs of replicas with overlapqαβ 6 q, where

x(q) = n +
k∑

r=0

(mr+1 − mr)θ(q − qr) (14)



Letter to the Editor L53

with mr+1 ≡ 1 andθ(q) as the step function. Assuming that the RSB goes to the arbitrary
k level, the function 06 x(q) 6 1 becomes continuous in then → 0 limit and equation (5)
transforms into integral expression of the form

βf non-diag
av = 1

2
ln[1 + p(βJ )2Rq2p−1(1)] − 1

2

p(βJ )2Rq2p−1(0)

1 + p(βJ )2R[
∫ 1

0 dy q2p−1(y)]

−
∫ 1

0
dx

(2p − 1)(βJ )2

4
q2p(x)

−1

2

∫ 1

0
dx

p(2p − 1)(βJ )2Rq2p−2(x)q ′(x)

1 + p(βJ )2R[xq2p−1(x) + ∫ 1
x

dy q2p−1(y)]
. (15)

Now, we prove that for a generalkRSB the only saddle point corresponding to the 1RSB
survives. By requiring stationarity of equation (15) with respect to the variations

δx(q) =
∑

r

(δmr+1 − δmr)θ(q − qr) −
∑

r

(mr+1 − mr)δ(q − qr)δqr (16)

one gets

q2p−2
r φ(qr) = 0 0 6 r 6 k∫ qr

qr−1

dq φ(q)q2p−2 = 0 1 6 r 6 k (17)

where

φ(q) = (βJ )2q −
∫ q

q(0)

dq ′ p(2p − 1)(βJ )4R2(q ′)2p−2

[1 + p(βJ )2RAp(q ′, q(1))]2
− p(βJ )4R2q2p−1(0)

[1 + p(βJ )2RAp(q(0), q(1))]2

Ap(q ′, q ′′) = (q ′′)2p−1 − (2p − 1)

∫ q ′′

q ′
dq x(q)q2p−2 (18)

so thatφ(qr) = 0, 0 6 r 6 k and sinceq2p−2 is increasingφ(q) must change sign for
qr−1 6 q 6 qr , possessing at least two extrema within each interval [qr−1, qr ] obeying
φ′(ξ) = 0 for ξ = qex

r . Thus, for thekRSB we expect not less then 2k stationary points as
solutions of the equation

dφ(ξ)

dξ
= 0 ⇒ κL(ξ) = κR(ξ) (19)

within the domain 06 q(0) 6 ξ 6 q(1), where

κL(ξ) = q2p−1(1) − (βJ )−1

[
pξp−1 − 1

(2p − 1)βJR

]
κR(ξ) =

∫ q(1)

ξ

dq x(q)q2p−2. (20)

Let us observe now that equation (20) and the property

d2κR(ξ)

dξ2
= −(2p − 2)ξ2p−3x(ξ) − ξ2p−2P(ξ) < 0 (21)

whereP(ξ) > 0 is the probability distribution of thermodynamic statesP(ξ) = dx(ξ)/dξ ,
implies thatκR(ξ) is monotonically decreasing concave function, whereasκL(ξ) for p > 1
is convex. Consequently, there are no more thantwo solutions of the stationary equation
(19) implying that the only solution for multipolar system involves one step of the replica
symmetry breaking.
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The important question which arises is: what happens beyond mean field in finite range
systems? Physically, the weight of the 1RSB solution is the probability for occurrence
of non-zero overlap. There is no reason why it should be constant and one would thus
expect that it fluctuates. Therefore, it would be useful to study the loop expansion about
the 1RSB solution. Finally, even in theM = ∞ infinite-range limit 1RSB is expected to
produce ergodicity breaking and ageing effects with non-trivial non-equilibrium relaxations
[17]. Further dynamical study of the problem seems of great interest.

This work was supported by the Polish Science Committee (KBN) under the grant
2P03B12909.
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